

Overview of advanced instrumental techniques employed in food and feed analysis

Vit Kosek

Food composition

Natural components

Natural toxins

Antinutrition comps.

Primary sensorically active comp.

Antioxidants and other biologically active components

Nutrients

proteins
lipids
saccharides
minerals
vitamins

Fiber

Contaminants

Environmental contaminants

Pesticide / veterinary drug residues

Migrants from plastics

Toxic metals

Processing products

Additives

Food and feed analysis

Applications:

- Regulatory
- Food safety
- Quality control
- Research and development

We need the methods to be...

- Precise
- Reproducible
- Accurate
- Simple
- Cheap
- Fast

- Sensitive
- Specific
- Safe
- Destructive/Non-destructive
- Online/Offline
- Official

Techniques must be always fit for purpose!

Elemental analysis

- Atomic absorption spectroscopy
- ICP-atomic emission spectroscopy
- ICP- mass spectrometry

ICP-AES

Molecular spectroscopy

- UV-VIS
- Infra-Red
- Nuclear Magnetic Resonance

Gas chromatography

- Separation of sample constituents in gas phase
- On the basis of volatility and structure
- Analytes need to be sufficiently volatile and thermally stable
- Analytes usually up to 1000 Da

More on this topic: Michal Stupák

Liquid chromatography

- Separation of sample constituents in liquid state
- Wide range of analytes are separable
- No need for temperature stability
- Several mechanisms:
 - Hydrophobic interactions (reverse phase)
 - Polar interactions and hydrogen bonds (normal phase, HILIC)
 - Charge interactions (ion Exchange)

More on this topic: Vojtěch Hrbek

Supercritical fluid chromatography

- Mobile phase supercritical CO₂ (Tcrit = 31 °C, Pkrit = 7390 kPa)
- Fluid with low viscosity and high diffusivity → high separation efficiency, shortened time of analysis
- Polarity of supercritical CO₂ ~ hexane
- •Amenable for analytes with wide range of polarities

More on this topic with:

Beverly Bělková, Michaela Rektorisová

Mass spectrometry

- Weighing molecules
- Molecules need to be ionised
- Ions can be manipulated with in electric or magnetic field
- Mass spectrum: m/z X intensity
- Destructive X very sensitive
- Specific

PARTS OF MASS SPECTROMETER

Mass analyser Ion source **Detector** Neutral molecules Ion separation in Ion detection (registration) after their are transfered to gaseous phase under charged particles → a high vacuum previous separation based on m/z, determination of ionization conditions according intensity of individual ions to the mass-tocharge ratio (vacuum) vacuum

Electron Ionization
Electrospray
Matrix Assisted Laser
Desorption Ionization

Quadrupole Ion Trap Time-of flight Orbitrap FT-ICR

Mass spectromectry and separation techniques

TANDEM MS

- A method comprising at least two levels of mass analysis steps: either in connection with a dissociation process or a chemical reaction that causes a change in the ion mass or ion charge
- MS/MS methods involve the activation of the selected ion (precursor)
- Activation of ions in space or in time

MODES OF TANDEM MS

- Product ion scan
- Precursor ion scan
- Neutral loss scan
- Selected reaction monitoring
- Multiple reaction monitoring

MODES OF TANDEM MS

■ Scan MSⁿ

■ Applicable for ion traps

Effect of tandem MS

Scan MSⁿ: selectivity × sensitivity

- Mass spectrometer has high resolving power
- Definition according to the width of one peak
- Full Width at Half Maximum (FWHM)
 - Mass difference expressed as the peak width of a given mass peak measured (in mass units) at 50% of its height

$$RP = m/\Delta m$$

m/z = 613.964203

A mixture of xylene (m/z 92.0581) and toluene (m/z 92.0626) at different settings of resolution

Mass accuracy:

- The deviation between measured mass (accurate mass) and calculated mass (exact mass) of an ion expressed as an error value (mDa, ppm)
- Important for structural interpretation (calculation of elemental composition)

$$\Delta \text{ (ppm)} = \frac{m_{\text{exp.}} - m_{\text{teor.}}}{m_{\text{teor.}}} \cdot 10^6$$

$$\Delta \text{ (mDa)} = \left(m_{\text{exp.}} - m_{\text{teor.}}\right) \cdot 10^3$$

FT-ICR

- RP: up to 10,000 k
- MA: below 1 ppm
- COST: +++++

ORBITRAP

- RP: up to 450 k
- MA: <1 3 ppm
- COST: ++++

TIME-OF-FLIGHT

- RP: up to 50 k
- MA: <1 5 ppm
- COST: +++(+)

Why do we need accuracy and precision?

100 -5 ppm 523.3427 7— 10 ppm of Possible Formulas Molecular formulas based on a free selection among 10 the elements C, H, N, O as function of relative mass error vs. m/z. $[(arginine)1-5+H]^+$

200

The higher the mass error the larger number of candidates

300

1 ppm

2 ppm

m/z

500

700

m/z

Possible chemical formulas for m/z = $C_{10}F_8$ = 271.98667

Formulas made of: C.H.N.O.F. & CI

Ambient mass spectrometry

- Sample ionization at atmospheric pressure
- Usually no separation
- Fast response
- MS imaging

REIMS

- Rapid Evaporative Ionization Mass Spectrometry
- First electrosurgical knife **1926**
- The hyphenation of electrosurgical knife and mass spec in 2010
- Developed for cancer surgery

REIMS system

REIMS data

Chronograms

REIMS method workflow

Authentication by REIMS

Why REIMS?

Advantages:

- Quick alternative PCR, MS a LC-MS methods
- Possibility of mobile instruments

Disadvantages:

- Low sensitivity
- Limited number of matrices

Ion mobility MS

- Additional separation dimension
- Standalone MS or hyphenated with LC
- Several types of ion mobility

Basic operation of ion mobility

Stacked ring ion guide gives linear field

Adding Ion Mobility Spectrometry in LC/MS

IMS fits between LC and TOF MS on the separation time scale!

IM separation of masked mycotoxins

DON-3-triGlc [M+HCOO]

Differential Mobility Spectrometry

DMS takes advantage of the differences in the mobility of ions in high and low electric fields (**Separation voltage**)

Differential Mobility Spectrometry

However, if the waveform is applied by high SV, the mobility of the ion during application of the peak voltage deviate from its low-field value (dependance of K from E). In this instance, during the higher voltage portion of the waveform, the ion travels at a velocity different than it would absent; this change in mobility:

$$v = K_{(E)} \cdot E$$

The ion traveling from a starting point will therefore <u>not return to exactly this same</u> <u>distance</u> from the electrode after one cycle and, thus, drift towards one of the electrodes.

Compensation voltage (CoV):

Restores the trajectory for a given ion to allow them to transmit through the DMS device and enter the mass spectrometer

Heat Map Chromatograms

m/z 100 to 1200 CoV -8 to 24 Run time 17 min

Conclusions

- Wide array of techniques exist
- Domination of separation techniques and mass spectrometry
- Manufacturesrs are routinely assisting in development of methods
- More exciting instrumental techniques to come!

