

Detection and elimination strategies of matrix effects

in quantitative multi-target LC-ESI-MS/MS analysis

David Steiner, Michael Sulyok, Leonardo Mariño Repizo, Lidija Kenjerić, Rudolf Krska

MultiCoop Training School, Prague, 28th November 2018

Research Promotion Agency

corticosteroid

singl

rharia cines

nema

trial

Background

- routine laboratory analysis is undergoing a noticable change
- LC-TQMS, 2D-LC-MS/MS, LC-HRMS instrumental approaches gain traction

Anal. Chem. 2008, 80, 9450-9459

Toward a Generic Extraction Method for Simultaneous Determination of Pesticides, Mycotoxins, Plant Toxins, and Veterinary Drugs in Feed and Food Matrixes

Hans G. J. Mol,*^{,†} Patricia Plaza-Bolaños,[‡] Paul Zomer,[†] Theo C. de Rijk,[†] Alida A. M. Stolker,[†] and Patrick P. J. Mulder[†]

RIKILT Institute of Food Safety, Wageningen University and Research Centre, Bornsesteeg 45, 6708 PD Wageningen, The Netherlands, and Department of Analytical Chemistry, University of Almeria, E-04071, Almeria, Spain

2008 and 2018

Analysis Scheme

ESI and Ion Source Overview

http://www.lamondlab.com/MSResource/LCMS/MassSpectrometry/electrosprayIonisation.php

 $SSE = \frac{Area of post extraction spike}{Area of neat standard}$

RSD of SSE > 20%

Matrix Effect (ME)

MultiCoop

TFA

TULLN

FFoQSI

combined effect of all components of the sample other than the analyte

absolute ME

increase or decrease in response between solvent standard and spiked pretreated sample

relative ME

differences in response, accuracy and/or precision between different batches of the same matrix

Legislation & Performance Criteria

Evaluation of Matrix Effects

- comprehensive evaluation of SSE% in 6 different matrices from different food & feed commodities
- effects were evaluated for 50 mycotoxins
- matrix effect potential from:
 - carbohydrates & dietary fibre
 - lipids & peptids
 - polar co-eluting substances
 - ionic species
 - interferents with similar chemical structure

Evaluation of Matrix Effects

Matrix Effects in Animal Feed

TULLN

FFoQS

MultiCoop

BUKU

DAkkS

Deutsche

Akkreditierungsstelle

Animal Feed – Validation

Validation data must be maintained for each feed group on at least one of the listed sample matrices

Status quo

feed group	characteristics
forage crops	↑ water
fruit marc	↑ acidicty
extraction cake	\uparrow sugar, \downarrow water
oilseeds	\uparrow fat, $\downarrow \downarrow$ water
grains	\downarrow water, \downarrow fat, \uparrow fibre
legumes	\downarrow water, \uparrow protein

Matrix effect \rightarrow (± 20%) Repeatibility \rightarrow RSDr \leq 20%

Complex Feed Matrices

28 compound feed samples

chicken, pig, fish, cattle 7 different lots of each

sample type

evaluation of SSE, EE, RA

Absolute matrix effects

Relative Matrix Effects

Frequency of analytes affected by intra matrix variationchicken < pig < fish < cattle</td>9%20 %24 %32 %

Signal suppressions for Zearalenone in cattle feed

- no uniformity regarding the composition
- compositional source of uncertainty up to 35 %

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 2 1 3 4 5 6 7 Lucerne meal Broad beans Wheat bran Sunflower cake Triticale Rye Corn Corn meal Peas Barley Rest

Composition of 7 compound cattle feed formulas

Feed Model Matrices

- no compositional uncertainties
- use of blank single feed ingredients
- simulation of intra-matrix variation

Results – Model Matrices Fusarium Metabolites

- absolute matrix effects: SSE \rightarrow 20 33 %
- relative matrix effects: RSD \rightarrow 9 18 %

- 15-Acetyldeoxynivalenol
- 3-Acetyldeoxynivalenol
- Diacetoxyscirpenol
- Fusarenon X
- HT-2 Toxin
- Monoacetoxyscirpenol
- Neosolaniol
- Nivalenol
- T-2 Toxin

Results – Model Matrices Aspergillus Metabolites

relative matrix effects: RSD \rightarrow 7 – 13 % 0

- Aflatoxin B1
- Aflatoxin B2
- Aflatoxin G1
- Aflatoxin G2
- Aflatoxin M1
- Averantin
- Averufin
- Sterigmatocystin
- Versicolorin A

15

TULLN

Real Sample vs. Model Matrix Multicoo 6

Prediction of Matrix Effects

$ME = 100 - \sum n (p * F_{SSE})$

- ME matrix effect
- **n** number of single feed ingredients
- p percentage SSE contribution
- **F**sse signal suppression/enhancement factor

Method Performance

 $s'_0 = \frac{s_0}{s_0}$

- $\mathbf{s'_0}$ is the standard deviation used for calculating LOD and LOQ
- **n** is the number of replicate observations avaraged when reporting results

Reduction Efficiency

- dilution of extract reduces both, relative and absolute matrix effects
- tenfold dilution steps → reduction of relative matrix effects by a factor of 2
- matrix reduction with QuEChERS extraction followed by an unspecific clean up (PSA, C18) is less efficient

• loss of Fumonisins during PSA step

to be an efficient and fast way to reduce the signal suppressing/enhancing matrix

effects provided by the matrices."

Dilute & Shoot on trial

"Simple dilution of the samples proved

[Eilfeld and Czapiewski 2013]

8 different herbal mix samples

MultiCoop

TULLN

Extraction Efficiencies

Proficiency Tests

- 140 PT results for regulated mycotoxins in animal feed obtained within 8 years
- >93 % of submitted results in the satisfactory range

28th November 2018

- matrix effects (ME) are a major limitating factor for LC-ESI-MS/MS multi-class methods
- dilution of extracts is a straightforward solution for a decisive reduction of ME
 - degree of dilution has to be considered in terms of sensitivity and protective mechanisms
- complex matrices like animal feedstuff represents an additional challenge in terms of relative matrix effects
- validation scheme should take intra-matrix variation into account
 - feed model matrices solves the compositional uncertainty
 - better estimation for method performance

Acknowledgement

≣Biomin≣

Gerd Schatzmayr

Andreas Gschaider Zoltan Balla

Eduard Schneeberger

Leonardo Mariño Repizo

Competence Centers for Excellent Technologies

Rudolf Krska, Michael Sulyok